$V = 1199.3 (12) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.26 \times 0.07 \times 0.06 \text{ mm}$

2220 independent reflections 1510 reflections with $I > 2\sigma(I)$

 $\mu = 2.24 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.042$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido(1,10-phenanthroline)copper(II)

Yin-Qiu Liu

College of Chemistry and Chemical Engineering, JiangXi Province Key Laboratory of Coordination Chemistry, JingGangShan University, 343009 Ji'an, JiangXi, People's Republic of China

Correspondence e-mail: liuyiqja@163.com

Received 21 October 2007; accepted 7 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.091; data-to-parameter ratio = 13.7.

In the title compound, $[CuCl_2(C_{12}H_8N_2)]$, the Cu^{II} atom adopts a distorted tetrahedral coordination formed by two N atoms from one 1,10-phenanthroline ligand and two Cl atoms. In the crystal structure, molecules form intermolecular C-H···Cl contacts and $\pi - \pi$ stacking interactions [centroid-tocentroid distances = 3.803 and 3.671 Å]. The shortest intermolecular Cu $\cdot \cdot \cdot$ Cl contacts are 4.306 (3) Å.

Related literature

For the related dimeric and polymeric structures, $[(C_{12}H_8N_2)CuCl_2]_2$ and $[(C_{12}H_8N_2)Cu_2Cl_2]_n$, see: Viossat *et al.* (1998); Wang et al. (2002).

Experimental

Crystal data

$[CuCl_2(C_{12}H_8N_2)]$	
$M_r = 314.65$	
Monoclinic, $P2_1/c$	
a = 8.000 (5) Å	
<i>b</i> = 15.669 (8) Å	
c = 11.348 (5) Å	
$\beta = 122.53 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: none 7416 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	162 parameters
$wR(F^2) = 0.091$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
2220 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C2-H2\cdots Cl2^{i}$ $C3-H3\cdots Cl2^{ii}$ $C7-H7\cdots Cl2^{iii}$	0.93 0.93 0.93	2.88 2.80 2.79	3.572 (3) 3.669 (3) 3.513 (3)	132 157 135
Symmetry codes: -x+2, -y, -z+2.	(i) $x - 1, -$	$-y + \frac{1}{2}, z - \frac{1}{2};$	(ii) $-x + 1, y - \frac{1}{2}$	$\frac{1}{2}, -z + \frac{3}{2};$ (iii)

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The author is grateful for support from the Key Laboratory of Coordination Chemistry, JingGangShan University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2255).

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Viossat, B., Gaucher, J. F., Mazurier, A., Selkti, M. & Tomas, A. (1998). Z. Kristallogr. New Cryst. Struct. 213, 329-330.

Wang, S., Li, Y., Wang, E., Luan, G., Hu, C., Hu, N. & Jia, H. (2002). J. Solid State Chem. 167, 402-406.

supplementary materials

Acta Cryst. (2007). E63, m2991 [doi:10.1107/S1600536807056735]

Dichlorido(1,10-phenanthroline)copper(II)

Y.-Q. Liu

Comment

As shown in Fig. 1, the title compound is a monomeric complex in which the Cu^{II} atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from one 1,10-phenanthroline ligand and two Cl atoms. In the crystal structure, molecules form intermolecular C—H···Cl contacts and π - π stacking interactions (Fig. 2). The dihedral angle and centroid-to-centroid distance between rings [C4–C8, C12] and [C1–C5, N1]ⁱ (symmetry code: (i) 1 - x, 1 - y, 1 - z) are 1.4° and 3.803 Å, respectively. Between rings [C4–C8, C12] and [C8–C12, N2]ⁱⁱ (symmetry code: (ii) 2 - x, 1 - y, 1 - z), the corresponding measurements are 3.0° and 3.671 Å.

Experimental

A mixture of 1,10-phenanthroline (0.161 g, 0.001 mol) and $CuCl_2$ (0.135 g, 0.001 mol) was added to methanol (20 ml), and the mixture was heated at 365 K for 5 h under reflux with stirring. The resulting solution was then filtered and single crystals suitable for X-ray diffraction analysis formed after a week by slow evaporation of the solvent.

Refinement

All H atoms were located at calculated positions and refined as riding on their parent C atoms with the C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure, showing displacement ellipsoids at 50% probability for non-H atoms.

Fig. 2. Packing diagram viewed along the b axis.

Dichlorido(1,10-phenanthroline)copper(II)

Crystal data

 $[CuCl_2(C_{12}H_8N_2)]$ $M_r = 314.65$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.000 (5) Å*b* = 15.669 (8) Å c = 11.348 (5) Å $\beta = 122.53 \ (3)^{\circ}$ $V = 1199.3 (12) \text{ Å}^3$ Z = 4

Mo Kα radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3375 reflections $\theta = 1.0-28.3^{\circ}$ $\mu = 2.24 \text{ mm}^{-1}$ T = 293 (2) KBlock, blue $0.26 \times 0.07 \times 0.06 \text{ mm}$

 $F_{000} = 628$

 $D_{\rm x} = 1.743 {\rm Mg m}^{-3}$

Data collection

Bruker SMART CCD diffractometer	1510 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.042$
Monochromator: graphite	$\theta_{\text{max}} = 25.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.5^{\circ}$
phi and ω scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -18 \rightarrow 18$
7416 measured reflections	$l = -13 \rightarrow 13$
2220 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0486P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\text{max}} = 0.001$
2220 reflections	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
162 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.73800 (6)	0.22097 (2)	0.95569 (4)	0.04570 (17)
Cl1	0.57194 (15)	0.31386 (6)	0.99943 (11)	0.0681 (3)
C12	0.92896 (14)	0.27755 (5)	0.89018 (11)	0.0621 (3)
N1	0.5460 (4)	0.12799 (16)	0.8272 (3)	0.0438 (7)
N2	0.8850 (4)	0.11559 (17)	1.0788 (3)	0.0456 (7)
C1	0.3787 (5)	0.1347 (2)	0.7024 (4)	0.0508 (9)
H1	0.3393	0.1885	0.6621	0.055 (10)*
C2	0.2612 (5)	0.0655 (2)	0.6306 (4)	0.0591 (10)
H2	0.1457	0.0728	0.5432	0.074 (12)*
C3	0.3154 (5)	-0.0135 (2)	0.6880 (4)	0.0550 (10)
H3	0.2374	-0.0606	0.6402	0.060 (10)*
C4	0.4892 (5)	-0.0243 (2)	0.8191 (4)	0.0452 (8)
C5	0.6006 (5)	0.04917 (19)	0.8855 (3)	0.0398 (7)
C6	0.5560 (5)	-0.1041 (2)	0.8883 (4)	0.0539 (9)
H6	0.4798	-0.1528	0.8468	0.066 (11)*
C7	0.7274 (5)	-0.1107 (2)	1.0122 (4)	0.0564 (10)
H7	0.7685	-0.1639	1.0547	0.069 (12)*
C8	0.8498 (5)	-0.0375 (2)	1.0818 (4)	0.0481 (8)
C9	1.0331 (5)	-0.0415 (3)	1.2071 (4)	0.0587 (10)
Н9	1.0841	-0.0936	1.2513	0.057 (10)*
C10	1.1382 (6)	0.0321 (3)	1.2647 (4)	0.0596 (10)
H10	1.2618	0.0301	1.3477	0.065 (11)*
C11	1.0576 (5)	0.1093 (2)	1.1984 (3)	0.0542 (9)
H11	1.1290	0.1590	1.2401	0.047 (9)*
C12	0.7828 (5)	0.0422 (2)	1.0188 (3)	0.0420 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0442 (3)	0.0321 (2)	0.0536 (3)	-0.00146 (18)	0.0216 (2)	-0.00104 (19)
Cl1	0.0739 (7)	0.0533 (6)	0.0802 (7)	0.0106 (5)	0.0436 (6)	-0.0022 (5)
Cl2	0.0557 (6)	0.0442 (5)	0.0879 (7)	0.0035 (4)	0.0397 (5)	0.0093 (5)
N1	0.0454 (16)	0.0361 (15)	0.0458 (16)	-0.0035 (13)	0.0219 (14)	0.0025 (13)
N2	0.0447 (16)	0.0437 (16)	0.0436 (16)	0.0004 (13)	0.0206 (14)	-0.0038 (13)
C1	0.050(2)	0.045 (2)	0.053 (2)	0.0025 (17)	0.0241 (18)	0.0037 (17)
C2	0.050(2)	0.061 (3)	0.051 (2)	-0.0022 (19)	0.0165 (19)	-0.0053 (19)
C3	0.046 (2)	0.048 (2)	0.062 (3)	-0.0079 (17)	0.023 (2)	-0.0093 (19)

supplementary materials

C4 C5 C6 C7 C8 C9 C10 C11 C12	0.046 (2) 0.0423 (18) 0.054 (2) 0.062 (3) 0.053 (2) 0.057 (2) 0.051 (2) 0.045 (2) 0.0442 (19)	0.0351 (18) 0.0372 (18) 0.0359 (19) 0.039 (2) 0.044 (2) 0.061 (3) 0.077 (3) 0.063 (2) 0.0400 (19)	0.063 (2) 0.0472 (19) 0.077 (3) 0.079 (3) 0.057 (2) 0.060 (2) 0.044 (2) 0.046 (2) 0.0479 (19)	-0.0001 (15) 0.0015 (15) 0.0008 (17) 0.0106 (18) 0.0087 (17) 0.019 (2) 0.019 (2) -0.0009 (19) 0.0046 (15)	0.0349 (18) 0.0289 (16) 0.039 (2) 0.045 (2) 0.0355 (18) 0.033 (2) 0.0209 (19) 0.0181 (18) 0.0289 (16)	-0.0065 (16) 0.0014 (15) -0.0028 (18) 0.0073 (19) 0.0054 (17) 0.018 (2) 0.010 (2) -0.0077 (19) 0.0022 (16)
Geometric paran	neters (Å, °)					
Cu1—N1		2.049 (3)	C4—C5		1.402	(4)
Cu1—N2		2.072 (3)	C4—C6		1.419	(5)
Cu1—Cl1		2.1998 (13)	C5—C1	2	1.433	(5)
Cu1—Cl2		2.2122 (14)	C6—C7		1.340	(5)
N1—C1		1.330 (4)	С6—Н6		0.930	
N1—C5		1.357 (4)	С7—С8		1.437	(5)
N2—C11		1.320 (4)	С7—Н7	,	0.930	
N2-C12		1.362 (4)	C8—C9		1.391	(5)
C1—C2		1.379 (5)	C8—C1	2	1.396 (5)	
C1—H1		0.930	C9—C1	0	1.368	(6)
C2—C3		1.357 (5)	С9—Н9	1	0.930	
С2—Н2		0.930	C10—C	11	1.387	(5)
C3—C4		1.397 (5)	С10—Н	10	0.930	
С3—Н3		0.930	С11—Н	11	0.930	
N1—Cu1—N2		81.35 (11)	N1—C5	—С4	122.7	(3)
N1—Cu1—Cl1		108.56 (9)	N1—C5	—C12	117.5	(3)
N2—Cu1—Cl1		124.60 (8)	C4—C5	C12	119.8	(3)
N1—Cu1—Cl2		115.78 (9)	С7—С6	—C4	121.1	(3)
N2—Cu1—Cl2		107.56 (9)	С7—С6	—Н6	119.4	
Cl1—Cu1—Cl2		114.87 (5)	C4—C6	—Н6	119.5	
C1—N1—C5		117.8 (3)	C6—C7	—С8	121.7	(3)
C1—N1—Cu1		129.9 (2)	C6—C7	—Н7	119.4	
C5—N1—Cu1		112.3 (2)	C8—C7	—Н7	118.9	
C11—N2—C12		117.8 (3)	С9—С8	C12	117.8	(3)
C11—N2—Cu1		130.8 (2)	С9—С8	—C7	123.9	(3)
C12—N2—Cu1		111.4 (2)	C12—C	8—C7	118.2	(3)
N1—C1—C2		122.9 (3)	C10—C	9—C8	119.4	(4)
N1—C1—H1		118.4	C10—C	9—Н9	120.2	
C2—C1—H1		118.7	C8—C9	—Н9	120.4	
C3—C2—C1		119.6 (4)	C9—C1	0—C11	119.3	(4)
С3—С2—Н2		120.2	C9—C1	0—H10	120.1	
C1—C2—H2		120.3	C11—C	10—H10	120.6	
C2—C3—C4		120.0 (3)	N2—C1	1—C10	123.1	(4)
С2—С3—Н3		120.2	N2—C1	1—H11	118.5	
C4—C3—H3		119.8	C10—C	11—H11	118.3	
C3—C4—C5		117.0 (3)	N2—C1	2—C8	122.6	(3)
C3—C4—C6		124.0 (3)	N2—C1	2—C5	117.4	(3)

supplementary materials

C5—C4—C6	119.0 (3)	C8—C12—C5	1	120.0 (3)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
$C2$ — $H2$ ··· $Cl2^{i}$	0.93	2.88	3.572 (3)	132	
C3—H3···Cl2 ⁱⁱ	0.93	2.80	3.669 (3)	157	
C7—H7····Cl2 ⁱⁱⁱ	0.93	2.79	3.513 (3)	135	
Symmetry codes: (i) $x-1$, $-y+1/2$, $z-1/2$; (ii) $-x+1$, $y-1/2$, $-z+3/2$;	(iii) $-x+2, -y, -z+2$.			

Fig. 1

Fig. 2